MULTI PERIOD BLENDING OPTIMISATION

Aurelio Ferrucci PROMETHEUS Process Manager Piazza Borgo Pila 40, 16129 Genova Italy Tel: +39010542011 Fax: +39010581451 Email <u>aurelio.ferrucci@prometh.it</u>

ABSTRACT

The Refinery Blending Manager's main objective is to fulfil the production program coping with inventories, intermediates' quality and logistic constraints. Off-spec production compromises this objective and quality give-away may arise from uncertainty to achieve onspec product with available intermediates.

Even though the optimal recipe depends also on current market scenario and on the intermediates shadow values calculated by LPs, usually the Blending Manager has neither the means nor the time to take decisions considering these aspects.

OTTMIX – the Prometheus application dedicated to Blending Optimisation – is designed to provide the Blending Manager with a reliable tool calculating optimal recipes according to current inventory, market scenario, logistic constraints and production schedule: the application manages autonomously the operational research issues (matrix generation, optimisation, solution reporting) thus no additional skills are requested to the user. The increasing confidence of the Blending Manager into application's predictions results into the effective progressive reduction of quality give away and laboratory work.

Describing the deployment of a Multi Period Blending Program for a complex conversion refinery (based on a real case), the author analyses the impact of alternative market scenarios and inventory constraints on the optimal recipe and estimates the resulting economical income.

BACKGROUND

Finished products blending constitutes one of the most delicate phases of the whole oil refining process: often these operations are not considered with right attention by refiners even if the poor optimisation of this operation can potentially frustrate good part of the efforts effected for improving the refining process.

Blending Optimisation means the maximisation of the economical return obtainable by product Sales – or more explicitly – the maximisation of high-value products yields; this usually (but not necessarily) coincides with the minimisation of quality give away.

As a "thumb rule" blending margins can be improved maximising the use of low-value intermediates for the production of high-value products; this is generally true but cannot abstract from an holistic approach: intermediate components management must account for all the grades to be produced and should be driven by the results of planning and scheduling applications. Moreover it is not easy to define the relative values of blend components, which depend on the processing economics and may change over time.

Refinery blending procedures can be considered in two major categories¹:

- <u>Batch Blending</u>, undertaken with or without blenders, using one or several tanks for the production of a commercial product,
- <u>In-line Blenders</u>, using on-line analysers at the output of the blender, so that an onspecification product is delivered either into the finished product tank or dispatched directly to the customer.

Modern plants privilege In-line blenders because of the higher performances provided:

- <u>Lower time needed for product manufacture</u>: batch blending involves constraints due to homogenisation, quality control and laboratory tests that are overcome thanks to the availability of online analysers. This permits to reduce stock levels and maintenance costs related to off-site facilities (lower amount of stock volume required per ton of product delivered).
- <u>Better quality monitoring</u>: sampling may be problematic in case of batch blending since sample reliability could be affected by poor of homogenisation. In case of in-line blending this problem is limited to the reliability of the analyser and is not affected by homogenisation.
- <u>Management of complex formulations</u>: the increasing number of commercial specifications to be controlled and of components available (resulting from the increased processing complexity) complicates the blending problem: in-line blending formulations are calculated by Multivariable on-line controllers (applying LP Methods and controlling simultaneously more quality specifications) while these supports are rarely used in case of batch blending.

Notwithstanding all these advantages <u>the refineries in the world equipped with in-line</u> <u>blenders are nearly the 20 percent¹</u>: this is mainly due to the high cost of investment involved: in-line blending requires the implementation of off-sites automation that means the set-up of a Tank Management System (providing data for off-sites operator management), of an Automatic Transfer Management System (needing an adequate instrumentation and permitting the automation of transfers) and of a Blend Management system (comparing the availability of component tanks with scheduling requirements and automating in-line product formulation).

Especially in case of existing blending facilities the elevate number of additional equipment and instrumentation required to adequate tank farms to in-line blending discourages Refiners from investing and Batch Blending approach continues to be applied.

The aim of this work is to improve the profitability of Batch Blending with a software application supporting the planning of blending operation and providing the Blending Operator (who is charged to decide when and how to prepare product tanks) with the same technologies exploited by multivariable controllers.

The Batch Blending Operator, who does not dispose of on-line analysers providing real time data, is generally induced to take safety margins to be sure that the tank will be on-specification with no need of further quality corrections.

As a matter of fact one of the main advantages of in-line blending is the reduction of quality give-away: in case of not automated batch blending, a positive contribution in this direction can be obtained providing the Operator with a system predicting in a reliable way the quality of the resulting mixture; this progressively <u>improves his confidence in the results</u> of the operation permitting him to reduce safety margins.

To provide concrete results the system must be able to model in detail the Blending Operations (with all the necessary complexity degrees), being at the same time of simple usage (with an interface oriented to Operator mentality and able to autonomously manage the techniques applied to solve the problem).

As an example, the weekly schedule of gasoline blending operation in the internal depot of a complex conversion Refinery is handled with the help of OTTMIX, the Prometheus Solution dedicated to Finished Products Blending. Quality and availability of blending components, tank bottoms, product specifications, formulations, logistic constraints and delivery schedule are used to build automatically a Multi Period LP/MIP model aimed to find the most profitable way to satisfy problem constraints.

¹ Refinery Operation and Management, J.P. Favennec, Editions Technip, 2001

PROBLEM DEFINITION

In the Refinery whose case is modelled as example, the Blending Operator Prepares Finished Products in the tanks of the internal Depot; when a tank is ready (full and onspecification), its content is transferred to the external Depot where it is made available for tank truck or tank wagon loading facilities. Usually the internal depot's tanks are filled during the day while transfers to external depot are made overnight.

Tank content quality is monitored with laboratory analysis that are time expensive and affect the whole tank preparation process: one of the expected goals is <u>reduce the number of tests required for each tank</u>.

Starting from the week shipping schedule, considering intermediates availability and quality, the Blending Operator decides which tank to prepare, how and when. While taking these decisions he ought to:

- *Minimise quality give away*: not only formulate a product on-specification but also to use at best available components maximising the economical return (the value of high quality intermediates is typically higher of poor quality ones).
- *Manage intermediates*: consider current and expected availability of each blending component in order to <u>avoid unforeseen shortage or excess</u>.
- *Manage blending facilities*: schedule each tank preparation coping with logistic constraints and trying to optimise each tank use factor.

The problem that is modelled in this example is the preparation of Gasoline products in the tanks of the Internal Depot: Table 1 reports the commercial specifications of the four grades of Gasoline produced and Table 2 the geometric data of the eight tanks destined to their preparation.

The components used for the gasoline blending are listed in Table 3: quantity and quality data of the intermediate products produced by the Refinery depends on Plants' operative conditions and are updated retrieving data from refinery database.

Besides Butane and MTBE, high octane components are produced by Isomerisation and Reforming Units: neither Cracking Naphtha nor Alkylate Cuts are available for gasoline Blending.

SPECIFICATION	UNIT	HEAVY NAPHTHA		LIGHT NAPHTHA		UNLEADED		UNLEADED PLUS	
		Min	Max	Min	Max	Min	Max	Min	Max
Antiknock Additives		Clear		Clear		Clear		Clear	
Density	kg/dm3	0.660	0.730	0.630	0.660	0.720	0.775	0.720	0.775
Sulphur	ppm		500		300		150		150
Paraffines	%v	65.0		87.0					
Aromatics	%v		12.0		4.0		37.8		40.0
Benzene	%v						0.9		0.9
Octane Number Motor	_					85.2		87.2	
Octane Number Research	_					95.2		98.2	
Reid Vapour Pressure	bar		0.840			0.500	0.800	0.600	0.900
Recovered@70℃	%v						48		50
Recovered@100℃	%v						71		71
Recovered@125℃	%v	50		95					
Recovered@150℃	%v					75		75	
Recovered@165	%v	95							
Recovered@180℃	%v							85	
Naphthenes + Aromatics	%v				13				
Vapour Lock Index	_						1050		1150

Table 1 –	Gasoline	Products	Grades
-----------	----------	-----------------	--------

NAME	PRODUCT	MINIMUM VOLUME [m3]	MAXIMUM VOLUME [m3]
TK002	Unleaded	1308	6594
TK004	Unleaded	1048	6309
TK005	Unleaded	2001	8667
TK006	Unleaded	2037	8876
TK011	Unleaded Plus	884	5109
TK022	Heavy Naphtha	600	4789
TK023	Light Naphtha	212	982
TK027	Heavy Naphtha	234	2007

Table 2 – Gasoline Products Tanks

NAME	DESCRIPTION
Butane	Butanes mixture from LPG Treatment Unit
MTBE	Imported Methyl Tert-Butyl Ether
Isomerate	Naphtha from C5/C6 Isomerisation Unit with Recycle of Hexanes
SR L.Naphtha	Straight Run Hydrotreated Light Naphtha from Splitter Unit
SR M.Naphtha	Straight Run Hydrotreated Mid Naphtha (Benzene precursors cut) from Splitter Unit
SR H.Naphtha	Straight Run Hydrotreated Heavy Naphtha from Splitter Unit
DH Bottom	Bottom of Isomerisation Unit DelsoHexaniser
Reformate + IC5	Naphtha from Reforming Unit mixed in plant with Iso-Pentane produced from Light Naphtha DelsoPentaniser

Table 3 – Intermediate Components

SYSTEM DESCRIPTION

The problem has been handled using OTTMIX, the Prometheus Linear Programming optimiser dedicated to Refinery Blending operations. Applying LP and MIP techniques, the software calculates the best way to produce LPG, Gasoline, Distillates and Fuel Oils from intermediate refinery stocks, accounting for Market prices, Intermediates stock quality and quantity, Product specifications and Production targets.

If the technological background is the same of LP Planning Applications (and partially of Multivariable Controllers used for in-line Blending Systems), program operating

environment has been specialised to handle the Blending Problem, providing functions specifically designed for this aim: <u>one of the founding ideas of Prometheus' Vision consists</u> <u>in promoting the widespread use of Optimisation Models</u> by removing (or reducing) the technological gap that up to now has impeded their application outside of the Planning Department. To operate the Model a mathematical background is not needed, and just a good understanding of the specific operation (Blending in this case) is requested.

The simplicity of use of the model doesn't involve any structural rigidity: the blending operation has been deepened to equip the program with the necessary flexibility to model every different problem. Moreover expert users can directly improve the LP model by adding User Balances, Variables, Coefficients and Constraints.

CHARACTERISATION OF BLENDING COMPONENTS

Covering the entire crude oil boiling range the application manages four types of physical properties, *Generic* (covering most part of the properties useful to model a Blend), *Evaporate* (weight or volume fraction recovered at a given Boiling Temperature for a given distillation test), *Temperature* (Boiling Temperature corresponding to a given recovered fraction for a given distillation test) and *Composite* (automatically calculated with a formula from other property values, for example [RON + MON] / 2).

Program predefined properties are listed in Table 4.

For any category it is possible to define additional *User Defined Properties* with their specific characteristics (Unit, Formats, Mixing Rule, Blending Indices, etc.); Figure 1 shows the application's panel useful to manage Physical Properties.

All the physical property defined in the Model are available for intermediate components characterisation and can be used to define commercial specifications once that a Mixing Rule has been provided.

- Temperature (0) : Composite (4) - N+A_ - N+V_ - N+V_ - N_V_ - N_U_2 - V⊔_2	Generalities Name: RON_ Description: Research Octane Type: [SENERIC Mix type: Mix in volume index Derived: - Use volume factor: If Library Pure Comp.: - Pseudo Comp: - Light ends: - Heavy streams: - - -	Inita Unit type: Adimensional Unit Inita falues Reference value Reference curve Iounda Min: 0 [_] Max 130 [_] Format: ##0.0 V 123.5
---	--	---

Figure 1 – Property Manager Panel

Depending on their boiling range, Blending components can be allocated over three categories:

- *Light Ends*: components that can be characterised from the composition (usually LPG or very light fractions) and whose property values are directly calculated by the program.
- Light Streams: components characterised with properties useful for Gasoline blending.
- *Heavy Streams*: components characterised with properties useful for Mid Distillates and Fuel Oil Blending.

Figure 2 shows the characterisation properties of the Light Streams used in this example: it is necessary to provide all the property values related to the commercial specifications set for the products to be prepared.

In the case of this example the characterisation data calculated by the refinery scheduler have been entered, but they can also be retrieved from Refinery Information System taking advantage of data Import/Export capability.

There is no theoretical limit to the number of components used by the model.

Name	Description	Unit	IS	LN	MT	MN	DH	HN	RI
Description		13 1	Isom	L.Naphtha	MTBE	M.Naphtha	DIH Btm	H.Naphtha	R98+iC5
Purchase Mode		3 3	Volume	Volume	Volume	Volume	Volume	Volume	Volume
TINI	Initial Boiling Point - TBP	°C	36	36	70	76	74	86	2
TFIN	Final Boiling Point - TBP	°C	74	76	80	86	76	155	21
DENS	Density	kg/dm3	0.6620	0.6620	0.7000	0.7033	0.7370	0.7510	0.770
SULP	Sulphur	ppm	17	17	0	22	5	34	3
V050	Viscosity @50°C	cst	0.37	0.37	0.00	0.43	0.40	0.58	0.5
v100	Viscosity @100°C	cst	0.29	0.29		0.33	0.20	0.40	0.3
MOLW	Molecular weight	Kg/mol							0.0
PARA	Paraffins	%v	90.30	88.00	100.00	74.70	45.00	55.20	44.6
NAFT	Naphtenes	%v	9.70	9.70	0.00	20.40	55.00	31.60	5.6
AROM	Aromatics	%v	0.00	2.30	0.00	4.90	0.00	13.20	49.7
BENZ	Benzene	%v	0.0	2.3	0.0	4.0	0.0	2.0	0.
OLEF	Olefins	%v	0.00	0.00	0.00	0.00	0.00	0.00	0.0
MON	Motor Octane	1	80.2	63.6	100.0	53.1	68.0	45.1	87.
MONE	MON 0.5 TEL		88.1	77.8	105.0	67.2	78.0	60.1	
MONM	MON 0.5 TML	12. 1	89.0	78.7	106.0	67.9	79.0	61.1	
RON	Research Octane	1	82.0	67.3	105.0	51.2	76.5	47.4	97
RONE	RON 0.5 TEL	1.	89.0	83.3	108.0	67.2	81.5	65.0	
RONM	RON 0.5 TML	1	89.5	83.5	109.0	68.0	82.0	66.0	
RD1	RON rec.@100°C		82.0	67.3	105.0	51.2	76.5	50.2	89
RD1E	RON 0.5 TEL rec.@100°C	1	89.0	83.3	108.0	67.2	81.5	67.0	
RD1M	RON 0.5 TML rec.@100°C	1	89.5	83.5	109.0	68.0	82.0	68.0	
BVP	Reid Vapour Pressure	bar	0.928	0.837	0.450	0.450	0.274	0.098	0.43
BROM	Bromine Number	a/100a	0.0	0.0	0.0	0.0	0.0	0.0	0
NITR	Nitrogen	DDM			0.0				
E070	Rec @70°C	%v	97.9	97.9	95.0	0.0	0.0	0.0	23
E100	Bec @100°C	%v	100.0	100.0	100.0	100.0	98.9	0.0	42
E115	Rec.@115°C	%v	100.0	100.0	100.0	100.0	100.0	27.0	52
E125	Rec.@125°C	%v	100.0	100.0	100.0	100.0	100.0	43.7	59
E150	Rec @150°C	%v	100.0	100.0	100.0	100.0	100.0	85.5	79
E165	Bec @165°C	%v	100.0	100.0	100.0	100.0	100.0	91.6	88
E180	Rec.@180°C	%v	100.0	100.0	100.0	100.0	100.0	97.7	96
E210	Rec.@210°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
E250	Rec @250°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
E 300	Rec.@300°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
E350	Rec.@350°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
E 360	Rec.@360°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
E370	Bec.@370°C	%v	100.0	100.0	100.0	100.0	100.0	100.0	100
N+A	NAFT + ABOM	%v	97	12.0	0.0	25.3	55.0	44.8	.00
BM 2	(BON+MON)/2		81	65	103	52	72	46	00
VII	Vapour Lock Index	-	1613	1522	1115	450	274	99	10

Figure 2 – Light Streams Characterisation Data

MODELLING COMMERCIAL SPECIFICATIONS

OTTMIX manages various types of Commercial Specifications depending on the nature of the object to be controlled:

- *Property*: to control the value of product property (for example: Max Density equal to...)
- *Component list*: to control the concentration of a list of pure components contained in the product (for example: Max C2 minus content in LPG products)
- *Additives*: to model the contribution and the costs related to the use of additives (for example: Pour Point Depressants or Cetane Improvers)
- *Antiknock Additives*: to model the behaviour of lead based Antiknock Additives (TEL and TML).

It is possible to associate commercial specifications to each characterisation object defined in the Model (Figure 3).

scription n rec.@205°C ax rec.@210°C n rec.@250°C ax rec.@250°C ax rec.@250°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@370°C n NAFT+ARDM ax NAFT+ARDM ax NAFT+ARDM	Type Min Max Max Max Min Min Min Min Min Max Max	Object Type Property	Object E205 E210 E250 E250 E350 E350 E350 E360 E370 N+A_ N+V	iii) Del	finition	1: Mayrec	a2015*d	5				
scription n rec.@205°C xx rec.@210°C n rec.@250°C xx rec.@250°C xx rec.@300°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@370°C n NAFT+ARDM xx NAFT	Type Min Max Min Max Min Max Min Min Min Max Max	Object Type Property	Object E205 E210 E250 E300 E350 E350 E360 E370 N+A_ N+A_ N+V		finition	1: Mayrec	ດວນຮະຕ					
n rec.@205°C xx rec.@210°C xx rec.@210°C xx rec.@350°C xx rec.@350°C xx rec.@350°C n rec.@350°C n rec.@350°C n rec.@360°C n rec.@370°C n rec.@370°C NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM	Min Max Max Max Max Max Min Min Min Max Max Max	Property Property Property Property Property Property Property Property Property Property Property Property Property	E205 E210 E250 E300 E350 E350 E360 E370 N+A_ N+A_ N+V	iii) Del	finition Description	1: May rec	ດວນຮະຕ					
xx rec. @210°C nn rec. @250°C xx rec. @250°C xx rec. @350°C nn rec. @350°C nn rec. @350°C nn rec. @360°C nn rec. @370°C nn rec. @370°C nn NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM xx NAFT-ARDM	Max Min Max Min Max Min Min Min Max Max	Property Property Property Property Property Property Property Property Property Property Property	E210 E250 E300 E350 E350 E360 E370 N+A_ N+A_ N+V	iii) Del	finition Description	1: May rec	ດວນຮະຕ					
n rec.@250°C xx rec.@250°C xx rec.@300°C n rec.@350°C n rec.@350°C n rec.@350°C n rec.@370°C n NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM	Min Max Min Max Min Min Min Max Max	Property Property Property Property Property Property Property Property Property Property	E250 E250 E300 E350 E350 E360 E370 N+A_ N+A_ N+V	Del	finition Description	1: May rec	ດວນຮະຕ					
xx rec. @250°C xx rec. @300°C nec. @350°C nec. @350°C nec. @350°C nec. @370°C n rec. @370°C NAFT+ARDM xx NAFT+ARDM xx NAFT+ARDM xx NAFU	Max Max Min Min Min Min Max Max	Property Property Property Property Property Property Property Property Property	E250 E300 E350 E350 E360 E370 N+A_ N+A_ N+V	Del	finition Description	1: May rec	ດາກະຕ					
xx rec. @300°C n rec.@350°C n rec.@350°C n rec.@370°C n rec.@370°C n NAFT+AROM xx NAFT+AROM xx NAFT+AROM xx NAFT+AROM	Max Min Max Min Min Max Max	Property Property Property Property Property Property Property Property	E 300 E 350 E 350 E 360 E 370 N+A_ N+A_ N+V	iii Del	finition Description	1: May rec	ດາກະຕ					
n rec.@350°C xx rec.@350°C n rec.@350°C n naFT+AROM xx NAFT+AROM xx NAFT+AROM xx NAFT+AROM	Min Max Min Min Min Max Max	Property Property Property Property Property Property Property	E 350 E 350 E 360 E 370 N+A_ N+A_ N+V	iii Del	finition Description	1: Mayrec	ດາກະຕ					
ax rec.@350°C n rec.@360°C n rec.@370°C n NAFT +AROM ax NAFT +AROM ax Ni+Va • (RON4000./2)	Max Min Min Max Max	Property Property Property Property Property Property	E 350 E 360 E 370 N+A_ N+A_ N+V	iii De	finition Description	1: Mayrec	@205°C					
n rec.@360°C n rec.@370°C n NAFT +AROM ax NAFT +AROM ax Ni+Va - (RON40N) /2	Min Min Max Max	Property Property Property Property Property	E360 E370 N+A_ N+A_ N+V		Description	1: Max rec	@205°C					
n rec.@370°C n NAFT+AROM ax NAFT+AROM ax Ni+Va a (RON - MON)/2	Min Min Max Max	Property Property Property Property	E370 N+A_ N+A_ N+V		Description	1: Mayree	@205°C					
n NAFT+AROM ax NAFT+AROM ax Ni+Va av RONU MONU/2	Min Max Max	Property Property Property	N+A_ N+A_ N+V		Description	1: Mayree	രാടൻ					
ax NAFT+AROM ax Ni+Va	Max Max	Property Property	N+A_ N+V		Description	1: May rec.	രാടംവ					
x Ni+Va	Max	Property	N+V			man roo.	@203 G					
- (DOM - MONU/2					Tup	a :			Т			
n (nun+mun)/2	Min	Property	RM_2		i ype	* MAX		<u> </u>				
n VLI	Min	Property	VLI_		Object Type	: Property		-	-	M/	\E205	
ax VLI	Max	Property	VLI_		Obies	4			-			_
n C4	Min	Component	C4		Objec	C [E205		-	<u> </u>			
n C2-	Min	Component	C2-									
ax C2-	Max	Component	C2									
n C3t	Min	Component	C3_	?						Exit		Apply
ax C3	Max	Component	C3						_	2		CEPPO
ax C5+	Max	Component	C5+_									
ax CFPP	Max	Additive	CFPP									
n E360I	Min	Additive	E36I									
n Antiknock Additive	Min	Antiknock										
ax Antiknock Additive	Max	Antiknock										
n \ n (n (ax n (ax ax n n / ax	/LI VLI Z4 C2- C2- C3- C3- C5+ CFPP E3601 Ántiknock Additive Antiknock Additive	/LI Min VLI Max Z4 Min C2- Min C2- Max Z3 Max C5+ Max C5+ Max C5PP Max E3601 Min Antiknock Additive Max ate Dejete Export	/LI Min Property VLI Max Property C4 Min Component C2- Min Component C3 Max Component C3 Max Component C3 Max Component C5+ Max Component C5+ Max Additive E3601 Min Additive Antiknock Additive Min Antiknock Antiknock Additive Max Antiknock ate Dejete Export Import	Min Property VLI VLI Max Property VLI_ VLI Max Property VLI_ C4 Min Component C4	/LI Min Property VLL VLI Max Property VLL Q4 Min Component C4 C2- Min Component C2 C3 Max Component C3 C3 Max Component C3 C3 Max Component C3 C5+ Max Component C5+ CFPP Max Additive CFPP S600 Min Additive E36I Antiknock Additive Min Antiknock Antiknock antiknock Additive Max Antiknock Frevie	Min Property VL VLI Max Property VL VL Max Property VL C4 Min Component C4 C2- Min Component C2 C3 Max Component C3 C3 Max Component C3 C5+ Max Component C5+ CFPP Max Additive CFPP S60I Min Antiknock Antiknock Antiknock Additive Max Antiknock Antiknock ate Delete Export Import Ereview	/LI Min Property VL_ VLI Max Property VL_ C4 Min Component C4_ C2- Min Component C4_ C2- Max Component C2_ C3 Max Component C3_ C3 Max Component C3_ C5+ Max Component C3_ CFPP Max Additive CFPP S4010 Min Antiknock Antiknock Min Antiknock Antiknock Max Antiknock	/Ll Min Property VLl VLI Max Property VLl VLI Max Property VLl C4 Min Component C4 C2- Min Component C4 C2- Max Component C2 C3 Max Component C3 C3 Max Component C3 C5+ Max Component C5+ CFPP Max Additive CFP E3601 Min Antiknock Antiknock Antiknock Additive Max Antiknock Antiknock	Min Min Property VLL UL Max Component C2 C2- Max Component C2 C3 Max Component C3 C3 Max Component C3 C5+ Max Component C5+_ CFPP Max Additive C56+ C301 Min Additive C56+ CFPP Max Additive C56+ CFPP Max Additive C56+ CFPP Max Additive C50+ CFP Max Antiknock attemore Delete Export Import	/Ll Min Property VL_ VLI Max Property VL_ Ubject Type: Property ▼ C4 Min Component C4 C2- Min Component C2 C3 Max Component C3 C5+ Max Component C3 C5+ Max Component C3 C5+ Max Component C5+_ C5+ Max Additive CFPP E360I Min Additive E36I Antiknock Additive Katiknock Antiknock Additive Type: Y	/Ll Min Property VL_ VLI Max Property VL_ C4 Min Component C4_ C2- Min Component C2_ C3 Max Component C3_ C5+ Max Component C5+ CFPP Max Additive CFPP E3601 Min Additive CFPP E3601 Min Additive E361 Antiknock Additive Max Antiknock antiknock Additive Exit Apply	//Ll Min Property //L_ VLI Max Property VLI_ C4 Min Component C4 C2- Min Component C2 C3 Max Component C3 C5+ Max Component C5+ C5+ Max Additive CFPP E30I Min Additive CFPP E30I Min Antiknock Antiknock Antiknock Additive Min Antiknock

Figure 3 – Commercial Specifications Types and Definition

Commercial specification constraints are set for each Product Tank (Figure 4): this constraints are always mandatory and the application can not suggest formulations with "Out of Specification" products.

Name	Description	Unit	F1	F2	F1	61	62	63	64	H1
Description	Description	OTIK	H Naphtha	H Naphtha	I Naphtha	Unleaded	Unleaded	Unleaded	Unleaded	Unlead Plus
Sale Mode			Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume
Dest Tank			022 - V Nph	027 - V Nob	023 - V Nob	002 J Ibl 95	004 - Upl 95	005 - Upl 95	006 - Upl 95	011.100198
Antiknock			Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
MIKNOK	Min Antiknock Additive	a/lt	0.00	Cical	Ciod.	Citcai	Cicar	Cical	Cical	ologi
MAKNOK	Max Antiknock Additive	o/lt								
MIDENS	Min Densitu	ka/dm3	0.6600	0.6600	0.6300	0.7200	0.7200	0.7200	0.7200	0.720
MADENS	Max Densitu	ka/dm3	0.7300	0.0000	0.6600	0.7250	0.7250	0.7250	0.7250	0.725
MASULP	Max Sulphur	nom	500	500	300	150	150	150	150	15
MIPABA	Min Paraffines	%v	65.00	65.00	87.00	100	100			
MAAROM	Max Aromatics	2v	12.00	12.00	4.00	37.80	37.80	37.80	37.80	40.0
MABENZ	Max Benzene	%v	12.00	12.00		0.9	0.9	0.9	0.9	0
MIMON	Min MON					85.2	85.2	85.2	85.2	87
MIBON	Min BON	-				95.2	95.2	95.2	95.2	98
MARON	Max BON	-								
MIRD1	Min BON rec @100°C	-								
MIBVP	Min BVP	_ bar				0.500	0.500	0.500	0.500	0.60
MARVP	Max BVP	bar	0.840	0.840		0.800	0.800	0.800	0.800	0.90
MIE070	Min rec.@70°C	%v		0.010		0.000	0.000			
MAE070	Max rec. @70°C	%v				48.0	48.0	48.0	48.0	50
MIE100	Min rec @100°C	%v								
MAE100	Max rec.@100°C	%v				71.0	71.0	71.0	71.0	71
MIE115	Min rec.@115°C	%v								
MAE115	Max rec.@115°C	%v								
MIE125	Min rec.@125°C	%v	50.0	50.0	95.0					
MIE150	Min rec.@150°C	%v				75.0	75.0	75.0	75.0	75
MIE165	Min rec.@165	%v	95.0	95.0						
MIE180	Min rec.@180°C	%v								85
MIN+A	Min NAFT+ABOM	%v								
MAN+A	Max NAFT+AROM	%v			13.0					
MIRM 2	Min (RON+MON)/2									
MIVLI	Min VLI	_								
MAVLI	Max VLI	-				1050	1050	1050	1050	115

Figure 4 – Product Tank Commercial Specifications

Besides commercial specifications, the Model permits to specify which intermediate components the model can use to prepare each finished product (Figure 5): composition ranges (min/max weight percent content in the finished product) may be also set at this level.

🕅 Gasoline I	Blendi	ing Schedule	_VL (Refine	y Internal I	Depot)=>1	- Weekly	Schedule :	=>Product	s=>Gasoline:			
Definition	Definition Composition Additives Volume Factors											
Name	Unit	E1	E2	F1	G1	G2	G3	G4	H1			
Description		H. Naphtha	H. Naphtha	L. Naphtha	Unleaded	Unleaded	Unleaded	Unleaded	Unlead. Plus			
BU	‰w	NO	NO	NO	0.3	0.3	0.3	0.3	0.3			
DH	‰w	YES	YES	NO	YES	YES	YES	YES	YES			
HN	%w	YES	YES	NO	YES	YES	YES	YES	YES			
IS	‰w	NO	NO	NO	YES	YES	YES	YES	YES			
LN	‰w	NO	NO	YES	YES	YES	YES	YES	YES			
MN	%w	NO	YES	YES	YES	YES	YES	YES	YES			
MT	%w	NO	NO	NO	0.14	0.14	0.14	0.14	0 - 14			
RI	%w	NO	NO	NO	YES	YES	YES	YES	YES			
Add		Dyplicate	Dejete	E	<u>x</u> port	Import	E	review	<u>E</u> xit	Apply		

Figure 5 - Defining Product Composition

MIXING RULES

One of the main issues involved with Blending Operation modelling is the prediction of hydrocarbon mixtures' properties: in some cases for a reliable prediction of mixture's quality, property values must be converted into indexes before being linearly blended on weight or volume basis. The calculation of properties with linear behaviour is represented by (1), being P_i and Q_i the property value and the quantity (weight or volume) respectively of each blending component and P_m and Q_m the property value and the quantity of the mixture:

(1)
$$P_m * Q_m = \Sigma (P_i * Q_i)$$

If linearisation indexes are used, the formula becomes (2), being Idx() the linearization function applied to the property value:

(2)
$$Idx(\mathbf{P}_{\mathrm{m}})*\mathbf{Q}_{\mathrm{m}} = \Sigma \left[Idx(\mathbf{P}_{\mathrm{i}})*\mathbf{Q}_{\mathrm{i}}\right]$$

Moreover, to calculate some particular properties (Antiknock, Evaporates), additional parameters (Volume Factors) must be considered in the blending calculation to account for the physical / chemical behaviour of each component. For instance the resulting RON of two mixtures SR Naphtha / Reformate and SR Naphtha / Isomerate is different even if Reformate and Isomerate have the same RON: this behaviour is due to the different chemical structure of the two components. In this last case the calculation formula becomes (3) or (4), being Fi the correction factor associated to each blending component.

(3)
$$P_m^* \Sigma (Q_i^*F_i) = \Sigma (P_i^*Q_i^*F_i)$$

(4)
$$Idx(\mathbf{P}_{\mathrm{m}})*\Sigma \mathbf{Q}_{\mathrm{i}}*\mathbf{F}_{\mathrm{i}} = \Sigma Idx(\mathbf{P}_{\mathrm{i}})*\mathbf{Q}_{\mathrm{i}}*\mathbf{F}_{\mathrm{i}}$$

Table 4 details the type of Mixing Rule applied to manage each hydrocarbon predefined property; the system manages also User Proprietary Methods.

Figure 6 shows some Volume Factor Values: a detailed study should be carried out basing on historical data to find the values best fitting the real contribution of each Blending Component.

G	l Gasoline B	lending Sche	dule_VL (Refinery	Internal Depot)	=>1 - Weekl	y Schedule =:	Products=>	Gasolines	_ 🗆 🗡
	Definition	Composition A	dditives Volume Fa	ctors					
f								_	
L.	Name	MUN_	RUN_	HD1_	EU/U	E100			
	Description	Motor Octane	Research Octane	RON rec.@100°C	Rec.@70°C	Rec.@100°C			
	BU (Imp)	1.02	1.05	1.05	1.1	1.05			
	DH (Imp)	1	1	1	1	1			
	HN (Imp)	1	1	1	1	1			
[IS (Imp)	1	1.19	1.19	1	1			
	LN (Imp)	1	1	1	1	1			
	MN (Imp)	1	1	1	1	1			
[MT (Imp)	1	1.03	1.03	1	1			
l	RI (Imp)	0.81	0.78	0.78	1	1			
1									
	A <u>d</u> d	D <u>u</u> plical	te Dejete	Export	Impor	Pre	/iew	<u>E</u> xit	Apply

Figure 6 - Volume Factors

PROPERTY	TYPE	MIX	VOL	PROPERTY	TYPE	MIX	VOL
	(1)	RULE	FACT			RULE	FACT
	(1)	(2)	(3)		(1)	(2)	(3)
Standard Density	G	LV	NO	Pour Point	G	IV	NO
Sulphur Content	G	LW	NO	Nitrogen Content	G	LW	NO
Kinematic Viscosity@50°C	G	IW	NO	Aniline Point	G	LW	NO
Kinematic Viscosity@100℃	G	IW	NO	Cetane Index	G	LV	NO
Paraffins Content	G	LV	NO	Diesel Index	G	LV	NO
Naphthenes Content	G	LV	NO	Ash Content	G	LW	NO
Aromatics Content	G	LV	NO	Asphaltenes Content	G	LW	NO
Benzene Content	G	LV	NO	Conradson Carbon	G	LW	NO
Olefins Content	G	LV	NO	Nickel Content	G	LW	NO
MON (Motor Octane Number)	G	LV	YES	Vanadium Content	G	LW	NO
MON Tetra Ethyl Lead 0.5 (4)	G	LV	YES	Test D86 Rec@070℃	Е	LV	YES
MON Tetra Methyl Lead 0.5 (4)	G	LV	YES	Test D86 Recovered@100℃	Е	LV	YES
RON (Research Octane Number)	G	IV	YES	Test D86 Recovered@150℃	E	LV	NO
RON Tetra Ethyl Lead 0.5 (4)	G	IV	YES	Test D86 Recovered@180℃	E	LV	NO
RON Tetra Methyl Lead 0.5 (4)	G	IV	YES	Test D86 Recovered@210℃	E	LV	NO
RON Recovered @ 100°C	G	IV	YES	Test D86 Recovered@250℃	E	LV	NO
RON Rec@100°C TEL0.5 (4)	G	IV	YES	Test D86 Recovered@300℃	E	LV	NO
RON Rec@100°C TML0.5 (4)	G	IV	YES	Test D86 Recovered@350℃	E	LV	NO
Reid Vapour Pressure	G	IV	NO	Test D86 Recovered@360℃	E	LV	NO
Bromine Number	G	LW	NO	Test D86 Recovered@370℃	Е	LV	NO
Flash Point	G	IV	NO	(RON + MON) / 2	С	LV	NO
Freezing Point	G	IV	NO	Vapour Lock Index	С	LV	NO
Cloud Point	G	IV	NO				
(1) Property Type: G = Generic, E = Eva	iporate, C	c = Compo	osite	•			
(2) Mixing Rule: LV = Linear Volume, LV	V = Linea	r Weight,	IV = Inde	x Volume IW = Index Weight			
(3) Use volume factor (YES / NO)							
(4) Added with 0.5 cc of Tetra Methyl Le	ad / Tetra	a Ethvl Le	ad per Lit	re			

Table 4 – Predefined Property Mixing Rules

PERIODS

The Blending Problem is managed on a Multi Period Base: for each period specified in the simulation (Figure 7) it is necessary to define the corresponding duration (in days). Depending on the length of the periods the application may support the scheduling of short (for instance a week as in the example), medium or short-medium term cases (a sequence of short duration periods joined with a sequence of long period).

🞖 Periods										<u>- 0 ×</u>
Periods										
Name	Unit	1	2	3	4	5	6	7		
Description		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday		
Duration	[Day]	1	1	1	1	1	1	1		
Start		10/03/2008	11/03/2008	12/03/2008	13/03/2008	14/03/2008	15/03/2008	16/03/2008		
End		10/03/2008	11/03/2008	12/03/2008	13/03/2008	14/03/2008	15/03/2008	16/03/2008		
	_				_					
A <u>d</u> d		Dyplicate	Dejete	Ex	port	Import	Previe	w	<u>E</u> xit	Apply

Figure 7 - Simulation Periods

Multi Period representation permits to manage the blending problem with an holistic approach, and this may constitute and advantage respect to in-line blending: components are used not only to adjust the current formulation but are managed considering also future periods expected schedule; especially in case of components shortage an overview of next future operation may provide tangible advantages.

Increasing the number of periods means to increase problem dimension and it results time expensive for matrix solving process (especially in case of MIP cases with many Integer Variables), thus a good compromise between number of periods and detail of schedule must be found.

For each period defined it is possible to set Capacity and Economics constraints of each object involved in the simulation (blending components, finished products, tanks, groups, etc.). When they are not set, the previous period data are considered.

TANKS

Tanks objects are available to simulate the logistics of Blending Operation and are used either to set capacity constraints (minimum and maximum quantities) and to specify – in case of product tanks – the quantity and the quality of the tank bottom that is to be included in product formulation.

Besides Tank's Stock Mode (defining whether capacity data are handled in weight or volume base), additional parameters are set to account for immobilisation costs, to quantify Tank's content economic value (at the beginning of the first period and at the end of the last period) and to simulate the specific utility consumption associated to the usage of each tank.

Product Tanks definition mask is showed in Figure 8: any finished product is compulsorily associated to a tank.

In this specific example, immobilisation costs are accounted for the 7 % per year of Tank content's value that is set to be equal to the 80 % of product's sale price.

Definition Capacity I	nitial Stock								
Name	Unit	002	004	005	006	011	022	023	027
Description		Unl.95	Unl.95	Unl.95	Unl.95	Unl.98	V.Nph	V.Nph	V.Nph
Stock Mode		Volume							
Interest cost	%/year	7	7	7	7	7	7	7	
% price	%	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.0
Valorization	€/m3 - €/ton								
Compulsory stock coeff.	_	1	1	1	1	1	1	1	
Product		G1	G2	G3	G4	H1	E1	F1	E2
FUEL	Mkcal/m3 - Mkcal/ton								
ELEN	MWh/m3 · MWh/ton								
H2OR	m3/m3 · m3/ton								
HPST	ton/m3 - ton/ton								
LPST	ton/m3 - ton/ton								

Figure 8 - Product tank Definition

Tank bottom is automatically included with its specific quality in product formulation; corresponding data can be either entered or imported from Refinery Information System (Figure 9). The system permits also to estimate unknown or not updated information using Library data that are built through historical databases.

🧃 Gasoline Blendi	ng Schedule_VL (Refinery	/ Internal	Depot)=>	1 - Week	ly Sched	ule =>P	products=>	Finishe	d Produc	ts Tanks		×				
Definition Capaci	ity Initial Stock															
Name	Description	Unit	002	004	005	006	011	022	023	027						
Description			Unl.95	Unl.95	Unl.95	Unl.95	Unl.98	V.Nph	V.Npł	n V.Npl	h					
Reference Stream			UL95	UL95	UL95	UL95_	UL98	MD_NF	H LT_N	PH MD_I	NPH					
TINI	Initial Boiling Point - TBP	°C							28	28	28					
TFIN	Final Boiling Point - TBP	°C						1	20	70	120					
DENS	Density	kg/dm3	0.7550	0.7550	0.7550	0. 🎬				-						
SULP	Sulphur	ppm	50	50	50		Gasoline	Blendin	g Sched	ule_VL (Re	efinery In	ternal De	pot)=>1	- Weekly	Schedule	e =>Prod
V050	Viscosity @50°C	cst					D. C. Y.	Canacily	Luvio							
V100	Viscosity @100°C	cst					Definition	Capacity	' Initial S	tock						
MOLW	Molecular weight	Kg/mol							002	004	005	000	011	022	022	027
PARA	Paraffins	%v					Description			Upl QE	1000	1000		V/Mob	V Moh	V Moh
NAFT	Naphtenes	%v					Stock Mode		ບກແອວ ຫວ	0ni.30	0ni.30 	0ni.30 m2	0nii.30	v.npn m2	w.htph m2	m2
AROM	Aromatics	%ν	37.80	37.80	37.80	3	Juitial Charle	;	1700.0	1049.0	2050.0	2100.0	004.0	720.0	1113	1110
BENZ	Benzene	%v	0.9	0.9	0.9		Mandau M		1200.0	1040.0	2000.0	2100.0	004.0	720.0	212.0	230.0
OLEF	Olefins	%v	0.00	0.00	0.00		Monday - M	ri 511	CE94.0	1046.0 c200.0	2001.0	2037.0	5109.0	4709.0	212.0	2007.0
MON	Motor Octane		85.2	85.2	85.2		Tuesday - M	da Line	1209.0	1049.0	2001.0	2027.0	004.0	4703.0 C00.0	302.0	2007.0
MONE	MON 0.5 TEL						Tuesday N	1111	CE04.0	C200.0	2001.0	2037.0	E100.0	4700.0	212.0	204.0
MONM	MON 0.5 TML	-					Tuesday - N	Tax Min	1000.0	1040.0	2001.0	0076.0	004.0	4703.0	302.0	2007.0
RON	Research Octane	-	95.2	95.2	95.2		weanesday	• Min	1306.0	C200.0	2001.0	2037.0	5100.0	4700.0	212.0	234.0
RONE	RON 0.5 TEL	-					wednesday	- Max	1000.0	1040.0	2001.0	0076.0	5103.0	4783.0	362.0	2007.0
RONM	RON 0.5 TML	-					Thursday - I	viin d	1308.0	1048.0	2001.0	2037.0	5100.0	4700.0	212.0	234.0
RD1	RON rec.@100°C	-					Thursday - I	Max	1000.0	6309.0	8667.0	8876.0	5109.0	4789.0	982.0	2007.0
RD1E	RON 0.5 TEL rec.@100°C	-					Friday - Min		1308.0	1048.0	2001.0	2037.0	884.0	600.0	212.0	234.0
BD1M	RON 0.5 TML rec.@100°C	-					Friday - Max	<i>r</i>	6594.0	6309.0	8667.0	8876.0	5109.0	4789.0	982.0	2007.0
BVP	Reid Vapour Pressure	– bar	0.600	0.600	0.600	C	Saturday - N	1in	1308.0	1048.0	2001.0	2037.0	884.0	600.0	212.0	234.0
BBOM	Bromine Number	a/100a					Saturday - N	1ax	6594.0	6309.0	8667.0	8876.0	5109.0	4/89.0	982.0	2007.0
×	DE LE DU		. 1		. 1		Sunday - M	n	1308.0	1048.0	2001.0	2037.0	884.0 5100.0	600.0	212.0	234.0
Add	Dyplicate Dejete	E	xport	Impo	n l		Sunday - M	XE	6534.0	6303.0	8667.0	8876.0	0.6010	4789.0	982.0	1 2007.U
										1		-	1		1	
							A <u>d</u> d		Dyplicate	:) eļete	Exp	ort	Import		<u>P</u> review

Figure 9 – Tank Bottom Quality and Initial Stock

BLENDING COMPONENTS AVAILABILITY AND PRODUCTION CONSTRAINTS (ECONOMICS)

PRICES

The Optimisation problem is focused on the Blending Department, as if it was an independent company buying intermediate and selling finished products; thus it is necessary to define purchase and sale prices for each object involved.

The economical value given to intermediate and finished products is very important since it constitutes the real "driving force" of the optimisation process; if in case of finished products it is possible to consider market sale prices, a direct reference for Intermediates purchase prices is not available, either because an "intermediates market" does not exist in reality, either because the real value (for the refinery) depends on many factors linked to refinery operation and market.

A reasonable approach, assuring uniformity with Refinery Planning Models, consists in using the "shadow values" calculated for each intermediate by the LP Model: these data represent the calculated value of each intermediate product and are retrievable from of Refinery LP Model Results.

While getting these data attention must be paid to the reliability of the solution: sometimes, not well consolidated LP simulations may contain unreasonable "shadow values" due to a "stressed" solution: that is why prices definition is a job that should be handled by the Planning Department that is charged to produce (weekly, monthly depending on Refinery Consolidated habits) the set of reference prices for intermediate and finished product to be used for Blending Optimisation.

The set of prices used for this example is reported in Table 5: being the simulation aimed to the development of a weekly schedule, prices have been kept constant in time; exercises aimed to simulate longer periods of time may also account for expected market fluctuations by setting different prices in different periods.

PRODUCT	TYPE	PURCHASE PRICE [€/m3]	SALE PRICE [€/m3]
Butane	Intermediate	192.38	-
MTBE	Intermediate	415.66	-
Isomerate	Intermediate	242.29	-
SR L.Naphtha	Intermediate	235.53	-
SR M.Naphtha	Intermediate	259.55	-
SR H.Naphtha	Intermediate	273.54	-
DH Bottom	Intermediate	265.69	-
Reformate + IC5	Intermediate	357.82	-
Heavy Naphtha	Finished	-	254.43
Light Naphtha	Finished	-	265.43
Unleaded Gasoline (95)	Finished	-	329.48
Unleaded Plus Gasoline (98)	Finished	-	368.89

Table 5 - Intermediate and Finished Product Prices

QUANTITIES

Quantity constraints are provided either to define intermediates availability and to set minimum and maximum productions: not providing a number means to assume an unbounded quantity.

The availability of blending components is given by the amount available at the beginning of the simulation (specified as "initial stock" in the intermediate tanks) plus the quantities produced by plants during each period: these last are considered to be "purchased" in bounded quantities, considering the amounts calculated by the scheduling model.

Figure 10 shows the form dedicated to the input of intermediate products economics: depending on specific scheduling needs two alternative approaches can be applied for intermediate products management:

- The amounts produced by the plants are fixed (Minimum Quantity equal to Maximum Quantity) in order to force the Model to utilise them even if it results not profitable: in this case formulations are less driven by the value of intermediate products and the Model optimises the management of storage facilities (*Plant Driven Approach*)
- The amounts produced by the plants are upper bounded (Minimum Quantity unbounded) permitting the Model to utilise them only if it results profitable: in this case formulations are mainly driven by the value of intermediate and finished products (*Economics Driven Approach*).

Through Figures 10 and 11 it is possible to compare the operation summaries resulting from the two different approaches (being unchanged all other constraints); obviously a mixed approach is applicable too (some intermediates fixed and some free).

Name	Period	Prid	ce.	Min Qtu	Max Qt	υ	MinLot	MIP	
	2 · 11 Mar/11 Mar 2008		€/m3	m3	315.0 n	, n3	m3	NO	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	315.0 n	n3	m3	NO	
	4 - 13 Mar/13 Mar 2008		€/m3	m3	562.5 n	n3	m3	NO	
IS (Isom)	5 - 14 Mar/14 Mar 2008		€/m3	m3	562.5 n	n3	m3	NO	
	6 · 15 Mar/15 Mar 2008		€/m3	m3	386.8 n	n3	m3	NO	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	386.8 n	n3	m3	NO	
	1 · 10 Mar/10 Mar 2008	273.54	€/m3	m3	116.2 n	n3	m3	NO	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	116.2 n	n3	m3	NO	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	116.2 n	n3	m3	NO	
HN (H.Naphtha)	4 - 13 Mar/13 Mar 2008		€/m3	m3	137.3 n	n3	m3	NO	
	5 - 14 Mar/14 Mar 2008		€/m3	m3	137.3 n	n3	m3	NO	
	6 - 15 Mar/15 Mar 2008		€/m3	m3	0.0 n	n3	m3	NO	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	0.0 n	n3	m3	NO	
	1 - 10 Mar/10 Mar 2008	242.72	€/m3	m3	264.8 n	n3	m3	NO	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	264.8 n	n3	m3	NO	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	264.8 n	n3	m3	NO	
LN (L.Naphtha)	4 - 13 Mar/13 Mar 2008		€/m3	m3	0.0 n	n3	m3	NO	
	5 - 14 Mar/14 Mar 2008		€/m3	m3	0.0 n	n3	m3	NO	
	6 - 15 Mar/15 Mar 2008		€/m3	m3	181.3 n	n3	m3	NO	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	181.3 n	n3	m3	NO	
	1 · 10 Mar/10 Mar 2008	352.20	€/m3	m3	890.8 n	n3	m3	NO	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	890.8 n	n3	m3	NO	
HI (H98+IC2)	3 · 12 Mar/12 Mar 2008		€/m3	m3	890.8 n	n3	m3	NO	
	4 - 13 Mar/13 Mar 2008		€/m3	m3	992.9 n	n3	m3	NO	

Figure 10 - Intermediate Products Economics

Blendings Bala	nce											_ [
, oreneings oaren							_					
all periods												
=				- GAH.	Naphtha	GA L. Naphtha	=	GAL	Inleaded		GA Unlead. Plus	
STREAMS	INIT.STOCK	FIN.STOCK	INPUTS	022	027	023	002	004	005	006	011	
Outputs + Losses				-503.9	-5277.3	-384.8	-4889.0	-819.5	-6431.1	-1670.4	-3050.1	
Initial Stock			7208.5	-503.9	-165.2	-139.2	-1343.9	-791.2	-2000.8	-1585.5	-678.9	
BU (Butane)			288.2				-81.1	-18.9	-101.0	-18.0	-69.2	
DH (DIH Btm)	399.5		519.7		-189.3		-100.5		-229.9			
HN (H.Naphtha)	2116.3	740.5	1843.6		-1843.6							
MT (MTBE)	951.9		1317.4				-340.0	-2.1	-525.9	-30.2	-419.3	
IS (Isom)	2548.7	2768.6	1662.1				-731.5	-7.2	-870.2	-36.8	-16.3	
LN (L.Naphtha)	1555.7	2075.7	245.6			-245.6						
RI (R98+iC5)	3527.5	1780.7	6861.9				-2292.0		-2703.4		-1866.4	
MN (M.Naphtha)	2250.6		3079.2		-3079.2							
	-		1	_	1.	1		-		1		
Add	Dyplicate	Dejete		Egport	ļ	nport			Preview		Exit	Apply

Figure 11 - Operation Summary in case of Plant Driven Approach

📕 Blendings Bala	nce											
all periods												
_	-			- GA H	Nanhtha	GAL Nanhtha	-	GAL	Inleaded		GA Unlead Plus	l
STREAMS	INIT.STOCK	FIN.STOCK	INPUTS	022	027	023	002	004	005	006	011	
Outputs + Losses				-503.9	-4001.6	-384.8	-4889.0	-819.5	-6430.7	-1668.7	-2818.1	
Initial Stock			7208.5	-503.9	-165.2	-139.2	-1343.9	-791.2	-2000.8	-1585.5	-678.9	
BU (Butane)			288.2				-81.1	-18.9	-101.0	·23.2	-64.0	
DH (DIH Btm)	399.5		399.5		-210.0		-100.5		-89.0			
HN (H.Naphtha)	2116.3	740.5	1375.8		-1375.8							
MT (MTBE)	951.9		1155.6				-340.0	-2.1	-399.9	-26.1	-387.5	
IS (Isom)	2548.7	875.6	1730.5				-731.5	-7.2	-937.0	-33.9	-20.9	
LN (L.Naphtha)	1555.7	1310.1	245.6			-245.6						
RI (R98+iC5)	3527.5	1780.7	6861.9				-2292.0		-2903.1		-1666.7	
MN (M.Naphtha)	2250.6		2250.6		-2250.6							
Add	Dyplicate	Dejete	1	Export		mport			Previev	,	<u>E</u> xit	

Figure 12 Operation Summary in case of Economics Driven Approach

Figure 13 shows the form dedicated to the input of finished products economics: besides price and min/max columns the "Delta Capacity" (maximum capacity minus

minimum capacity) of the tank associated the product is reported as well as the MIP mode meaning if the sell is to be managed as an integer variable (the program is allowed to sell the product only if the tank is full) or not.

								_
Product	Period	Pric	e	Min Qty	Max Qty	Delta Capacity	MIP	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
FK 004 G2 (Upleaded)	4 - 13 Mar/13 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
rik 004 · uz (onieaueu)	5 - 14 Mar/14 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
	6 - 15 Mar/15 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	5261.0 m3	5261.0	YES	
	1 - 10 Mar/10 Mar 2008	329.48	€/m3	m3	6666.0 m3	6666.0	YES	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
FK 005 · G3 (Unleaded)	4 - 13 Mar/13 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
	5 - 14 Mar/14 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
	6 - 15 Mar/15 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	6666.0 m3	6666.0	YES	
	1 - 10 Mar/10 Mar 2008	329.48	€/m3	m3	0.0 m3	6839.0	NO	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	0.0 m3	6839.0	NO	
	3 - 12 Mar/12 Mar 2008		€/m3	m3	0.0 m3	6839.0	NO	
FK 006 · G4 (Unleaded)	4 - 13 Mar/13 Mar 2008		€/m3	m3	0.0 m3	6839.0	NO	
	5 - 14 Mar/14 Mar 2008		€/m3	m3	0.0 m3	6839.0	NO	
	6 - 15 Mar/15 Mar 2008		€/m3	m3	0.0 m3	6839.0	NO	
	7 - 16 Mar/16 Mar 2008		€/m3	m3	6839.0 m3	6839.0	NO	
	1 - 10 Mar/10 Mar 2008	388.89	€/m3	m3	4225.0 m3	4225.0	NO	
	2 - 11 Mar/11 Mar 2008		€/m3	m3	4225.0 m3	4225.0	NO	
FK 011 · H1 (Unlead. Plus)	3 - 12 Mar/12 Mar 2008		€/m3	m3	4225.0 m3	4225.0	NO	-
	4 - 13 Mar/13 Mar 2008		€/m3	m3	4225.0 m3	4225.0	NO	

Figure 13 - Finished Products Economics

GENERAL BOUNDS

Sometimes it is necessary to specify capacity bounds for a group of objects: for example, the Blending Operator might be interested in producing a given amount of product without caring of which tanks will be used for this purpose or better, he might be interested in knowing which sequence of tanks is most profitable to prepare in the forthcoming week: General Bounds permit to group together under the same capacity constraint more objects (finished product tanks in this case).

Figure 14 shows General Bounds Definition Form: in this specific example a General Bound has been defined for every product grade, grouping together the tanks associated to the same grade.

	Unit	HVNP	LTNP	UL95 U	Definition Capaci	ty			
Description		Heavy Naphtha	Light Naphtha	Unleaded 95 U					
Stock Mode		Volume	Volume	Volume	Name	HVNP	LTNP	UL95	UL98
Cost	€/ton	0	0	0	Description	Heavy Naphtha	Light Naphtha	Unleaded 95	Unleaded 98
BU (Import)		NO	NO	NO	Unit	m3/day	m3/day	m3/day	m3/day
IS (Import)		NO	NO	NO	Monday - Min				
HN (Import)		NO	NO	NO	Monday - Max	5962	770	24052	422
LN (Import)		NO	NO	NO	Tuesday Min				
RI (Import)		NO	NO	NO	Tuesday - Max	5962	770	24052	422
MN (Import)		NO	NO	NO	Wednesday - Min				
DH (Import)		NO	NO	NO	Wednesday - Max	5962	770	24052	422
MT (Import)		NO	NO	NO	Thursday - Min				
TK 022 - E1 (Product)		YES	NO	NO	Thursday - Max	5962	770	24052	422
TK 027 - E2 (Product)		YES	NO	NO	Friday - Min				
TK 023 - F1 (Product)		NO	YES	NO	Friday Max	5962	770	24052	422
TK 002 - G1 (Product)		NO	NO	YES	Saturday - Min				
TK 004 - G2 (Product)		NO	NO	YES	Saturday - Max	5962	770	24052	422
TK 005 - G3 (Product)		NO	NO	YES	Sunday - Min				
TK 006 - G4 (Product)		NO	NO	YES	Sunday - Max	5962	//U	24052	422
TK 011 - H1 (Product)		NO	NO	NO					
FUEL	Mkcal/m3 - Mkcal/ton				A <u>d</u> d	Dyplicate	Dejete	Export	Import
ELEN	MWh/m3 - MWh/ton								
H2OR	m3/m3 - m3/ton								
HPST	ton/m3 - ton/ton								
LPST	ton/m3 - ton/ton								

Figure 14 General Bounds Definition

Similarly it is possible to set capacity bounds grouping together more periods, in case that the Blending Operator was not interested in specifying when a given amount of product will be exactly shipped provided that that amount will be prepared by a given date.

INTEGRATION WITH REFINERY INFORMATION SYSTEM

To be really usable in the ordinary planning practice, the system must be integrated with Information System of the Refinery, in order to get automatically the data useful to perform the simulation and to minimise direct data entering.

The program is equipped with import/export functions permitting to write to and read from MS Excel Files (see Figure 15).

Within Excel Environment it is possible to build automation procedures retrieving data from the Refinery Information System and preparing these transfer Files in a format easily read by the application.

Data to be retrieved from the information system are:

- Intermediates and Tank quality data: from laboratory database
- Intermediates expected availability: form short term scheduling applications
- Tank status data: from tank management systems
- Prices and shipping schedule: from planning and scheduling applications.

XМ	crosoft Ex	cel												_ 🗆 ×
Eile	Eile Modi	fica <u>V</u> isualizza	Inserisci F	ormato <u>S</u> tru	imenti D	ati Fi <u>n</u> est	ra <u>?</u>							
Π'n		🔿 🖪 🖤	X h A	🛷 🔊 -	C# +		Σf_{*}		in 🥥 .	100%	• 🕢			
II MAG	Conse Could				.* =	= =	E a	21 at	t.0 .00	rin rin larr	1 8	A		
MD	Sans Serii	• •	• 6 1	⊇ A	A =	= =	19 D	70 .	0, + 00,			A •		
-	F6	<u> </u>	= 0.7											
	asoline Ble	ending Sched	lule_VL InOu	ıt.xls:1										_ 🗆 ×
100	A		В	C	D	E	F	G	Н	1	J	K	L	M
13	Name	Descripti	on	Unit	Isom	LN L Naohth	MI MTPE	MN M Nachtk	DIH Ptr	HN H Nachtha	BI BOOMES			
3	Purchase M	lode			Volume	Volume	Volume	Volume	Volume	Volume	Volume			
4	TINI	Initial Boi	ling Point - TB	P °C	36	3	6 70	1	76 7.	4 86	3 28			
5	TFIN	Final Boil	ing Point - TBF	P °C	74	7	6 80	1 8	36 71	6 155	5 215			
6	DENS	Density		kg/dm3	8 0.662	0.66	2 0.7	0.703	33 0.73	7 0.751	0.7702			
7	SULP	Sulphur	05000	ppm	17	1	7 0		22	5 34	30			
a	V050	Viscosity	@100°C	cst	0.37	0.3	57 C	0.4	13 D.+ 00 0.1	4 U.58	0.51			
10	MOLW	Molecula	e weight	Kalmol	0.25	0.2	.5	0.,	55 U.	s U.4	0.36			
11	PARA	Paraffins		%v	90.3	ι P	8 100	74	.7 4	5 55.2	44,61			
12	NAFT	Naphten	es	%v	9.7	9	7 0	20	4 5	5 31.6	5.67			
13	AROM	Aromatic	s	%v	0	2	.3 0	4	.9 1	0 13.2	49.72			
14	BENZ	Benzene		%v	0	2	.3 0	1	4 1) 2	2 0.9			
15	OLEF	Olefins		%v	0		0 0		0 1	0 0) 0			
16	MUN_	Motor Uc	stane	-	80.2	63	.6 10L	53	1 6	8 45.1	87.6			
10	MUNE	MUN 0.5	THE	=	88.1	11.	8 105	6/	.2 /3	5 60.1 D 01.1				
19	RON	Besearch	h Octane	5	82	67	3 105	5 51	2 76	5 47.4	97	-		
	N N RE	F 1 I S IMPOR	TS / REE 1							- 11. -			n de g	M HĊ
1	(····				_	_	_	_			_			
Last	oline Blend	ing Schedule	_VL InOut.x	ls:2			-	-		200				
4	D	A	1	3	C	DIN	E N	F	G	H	1 101	C L J OL	K	
1-2	TK 022 E1		1,10 Mar/1	IN May 2000	100.00	Price Mi	ուզայա	nuy m	4100 N	ាងនេះ ដេហ្វេ ១០	chea yay	Sched Qty	Delta Lapaci	
3	TK 022 - E1	(H. Naphtha)	2 - 11 Mar/1	11 Mar 2008	105.55	€/m3		3	4103 m	3		m3	41	189 YES
4	TK 022 - E1	(H. Naphtha)	3 - 12 Mar/1	12 Mar 2008	-	€/m3	m	3	4189 m	i3		m3	41	189 YES
5	TK 022 - E1	I (H. Naphtha)	4 - 13 Mar/1	13 Mar 2008		€/m3	m	3	4189 m	13		m3	41	89 YES
6	TK 022 - E1	I (H. Naphtha)	5 - 14 Mar/1	14 Mar 2008		€/m3	m	3	4189 m	13		m3	41	89 YES
7	TK 022 - E1	1 (H. Naphtha)	6 - 15 Mar/1	15 Mar 2008		€/m3	m	3	4189 m	13		m3	41	89 YES
8	TK 022 - E1	I (H. Naphtha)	7 - 16 Mar/1	16 Mar 2008	100.00	€/m3	m	3	4189 m	13		m3	41	89 YES
10	TK 027 - E2	2 (H. Naphtha)	2 11 Mar/1	10 Mar 2008	189.33	6/m3	m	3	1772	13		m3	17	73 YES
11	TK 027 - E.	2 (H. Naphtha)	3.12 Mar/1	12 Mar 2008		€/m3	m	3	1773 m	3		m3	17	73 YES
12	TK 027 - E2	(H Naphtha)	4 - 13 Mar/1	13 Mar 2008		€/m3		3	1773 m	3		m3	17	73 YES
13	TK 027 - E2	2 (H. Naphtha)	5 - 14 Mar/1	14 Mar 2008		€/m3	m	3	1773 m	13		m3	17	73 YES
14	TK 027 - E2	2 (H. Naphtha)	6 - 15 Mar/1	15 Mar 2008		€/m3	m	3	1773 n	13		m3	17	73 YES
15	TK 027 - E2	2 (H. Naphtha)	7 - 16 Mar/1	16 Mar 2008		€/m3	m	3	1773 m	13		m3	17	73 YES
16	TK 023 - F1	(L. Naphtha)	1 - 10 Mar/1	10 Mar 2008	200.77	€/m3	m	3	770 m	13		m3	7	70 NO
17	TK 023 - F1	(L. Naphtha)	2 - 11 Mar/1	11 Mar 2008		€/m3	m	3	770 m	13		m3	7	70 NO
10	TK 023 - F1	(L. Naphtha)	3 · 12 Mar/1	12 Mar 2008		6/m3 6/m2	m	3	770 m	13 .0		mJ m2	1	70 NU 770 NO
100	TK 023-FI	r (c. Naprinia)	4-15 mal/1	13 Mai 2008		0/110	m		770 m	0 0		1113		TO NO
114	IN N R	EF 1 LS IMPOR	15 XREF 1	PRD ELU /										
Pron	ito								1 E				NEM	

Figure 15 Data Exchange via MS Excel

MATRIX GENERATION AND OPTIMISATION PROCESSES

Running the Optimisation Process the system automatically generates a Linear Programming Matrix representing the blending problem.

In our example the Blending problem is represented by about 1200 balances, 900 variables (of whom 30 to 60, depending on the number of objects handled in MIP mode, are Integer), and 6700 coefficients.

The problem is solved using a commercial solver (LINDO API): two alternative Optimisation Algorithms are available: Pure Linear Programming and Mixed Integer Programming (that is mandatory to perform MIP functions).

The problem is solved in less than one second with the LP algorithm and in about one minute with the MIP algorithm (depending on the number of integer variables used in the specific case).

In case of infeasible problems, the system provides a report detailing which constraints have caused the infeasibility. Figure 17 shows the report produced by the program in case of incapacity to produce the specified amount of products on specification (being the limiting specification Research Octane Number): the report highlights the volume balance of the product, the balance of product specification and the maximum composition bound set for MTBE, that is the component used by the model to raise the octane number of the mixture to the desired level.

🕵 Solver status 🛛 🗙	Solver status
I Solver status	■ Solver status
Current operation	Current operation
Optimization terminated	
₽	
Details Solver environment creation Solver license limits retrieving Reading matrix file Problem size retrieving Integer variables setting Solver running Solver status retrieving UPTIMAL. II 1397 sec. Dptimization terminated. Result is: 1285596.6	Details <u> </u>
Summary	Summary
1185 Rows MIP Algorithm	1189 Rows LP Algorithm
893 Columns	897 Columns
35 Int. Var. 6655 Non-Zero Values	6687 Non-Zero Values
100%	100%
Show matrix Show solution Show report	Show matrix Show solution Find infeas.

Figure 16 – Example of Optimisation Process Reports

📝 c:\Svil	uppo\Simraf-Ottmix\SI	(MS\Gasoline	Blending Schedule_VL\Work\Gasoline Blending Schedule_VL.inf		
M 💁	a 🕨 🔽				
Infeasil OTTMIX	oility Report 2.11.0				
Simulat: Date:	ion: Gasoline Blend 25.03.2008 - 1	ing Schedu 8:08 ======	1e_VL		
SSS Suf	ficient set of cons	traints:	NF4CDTDTTNN		
[01]	111BIVLH1	Row	Volume balance of product	1 1 H1	-> refinery -> period -> product
[02]	115H1MIRON_	Row	Balance of product specification	1 1 H1 MI	-> refinery -> period -> product -> MA=max. MI=min
[03]	11HH1MT	Row	Maximum quantity of stream in product composition	RON_ 1 1 H1	-> specification -> refinery -> period -> product
				MT	-> stream
•					V V

Figure 17 - Infeasibility Report Example

RESULTS

The application produces many reports providing any information useful to define the production schedule. Each report details the operating asset suggested by the optimal solution either for one specific period and for the global schedule (all the periods defined in the simulation). All the reports are automatically elaborated by the system after optimisation run and can be examined upon request.

Reports can be considered of the following types:

• *Economical Reports*: detailing the economical result of each period in terms of purchased components, shipped products, operative and immobilisation costs and stock valorisation (Figure 18).

INTERMEDIATES/PRODUCTS	ACQUIRED QTY ton	DELIVERED QTY ton	PRICE €/ton	TOTAL€	INCR.VALUE €/ton
Butane	106.1		251.76	-26706.44	232.95
DIH Btm	23.6		277.69	-6549.12	76.55
H.Naphtha	87.2		274.25	-23911.96	-54.89
MTBE			554.79		-0.03
lsom	208.5		284.06	-59217.01	-56.86
L.Naphtha	175.2		274.24	-48056.18	-54.89
R98+iC5	686.1		340.72	-233763.70	169.50
M.Naphtha	105.2		274.25	-28854.94	-40.02
TK 022 - H. Naphtha			270.55		54.47
TK 027 · H. Naphtha		1286.7	260.89	335682.10	33.89
TK 023 - L. Naphtha		244.9	304.20	74487.38	
TK 002 - Unleaded			369.81		0.36
TK 004 - Unleaded			370.55		140.85
TK 005 - Unleaded			370.85		0.17
TK 006 - Unleaded			371.25		0.43
TK 011 - Unlead. Plus		1503.9	386.28	580927.30	-138.27
Gross Total	1391.9	3035.5		564037.40	
Financial Costs				-614.73	
Initial Stock Value				573076.40	
Final Stock Value				6710622.00	
Total Result				5304654.00	

Figure 18 - Economic Balance example

 Operative Reports: summarising the quantities handled to produce each finished product in a given period (Figure 19) and – on a multi period base – the status of each intermediate and finished product tank accounting for purchasing, blending and shipping operations (Figure 20).

Blendings Bala	nce										
Blendings Material Balance in period "1"											
-				- GAH.	Naphtha	GA L. Naphtha	-	GAL	Jnleaded		GA Unlead. Plus
STREAMS	INIT.STOCK	FIN.STOCK	INPUTS	022	027	023	002	004	005	006	011
Outputs + Losses				-503.9	-1456.5	-384.8	-1437.2	-819.3	-2266.4	-1682.1	-2168.6
Initial Stock			7208.5	-503.9	-165.2	-139.2	-1343.9	-791.2	-2000.8	-1585.5	-678.9
BU (Butane)			106.1					-18.9		-37.5	-49.7
DH (DIH Btm)	399.5	388.2	34.9						-34.9		
HN (H.Naphtha)	2116.3	1482.1	721.4		-721.4						
MT (MTBE)	893.2	386.5	506.7				-48.1	-2.0	-146.6	-27.4	-282.6
IS (Isom)	2548.7	2615.1	142.0				-36.2	-7.2	-42.6	-22.5	-33.4
LN (L.Naphtha)	1555.7	1485.3	245.6			-245.6					
RI (R98+iC5)	3527.5	3089.7	1123.9								-1123.9
MN (M.Naphtha)	2250.6	1726.1	629.7		-570.0		-9.0		-41.5	-9.2	
A <u>d</u> d	Dyplicate	Dejete		E <u>x</u> port	ļ	nport			Preview		<u>E</u> xit

Figure 19 - Blendings Balance example

Multi Period Production Balance													
Multi Period Production in all periods													
		<u> </u>	- 14	nue from 10703	2/2000	— 1.4	l nus from 11703	22000	- 14		0/2000	Liron 12	5
	LINIT	стоск		BLENDING	STOCK		BLENDING	STOCK		BLENDING	STOCK		B
Butane	ton	STOCK	106.1	-106.1	STOCK	110/001	BEENDING	STOCK	97.2	-97.2	STOCK	110/001	Ē
DIH Btm	ton	399.5	23.6	-34.9	388.2	23.6		411.7	23.6	-307.0	128.3	24.9	Н
H Naphtha	ton	2116.3	87.2	-721.4	1482.1	87.2	-316.8	1252.5	87.2	001.0	1339.7	103.1	Н
MTBE	ton	893.2		-506.7	386.5			386.5	165.9	-552.4			Н
Isom	ton	2548.7	208.5	-142.0	2615.1	208.5		2823.6	208.5	-703.2	2328.8	372.3	Г
L.Naphtha	ton	1555.7	175.2	-245.6	1485.3	175.2		1660.6	175.2		1835.8		П
R98+iC5	ton	3527.5	686.1	-1123.9	3089.7	686.1		3775.8	686.1	-2416.9	2045.0	764.7	Г
M.Naphtha	ton	2250.6	105.2	-629.7	1726.1	105.2	-950.3	881.0	105.2	-43.4	942.8	152.1	Г
TK 022 - H. Naphtha	ton	503.9		0.0	503.9			503.9			503.9		
TK 027 - H. Naphtha	ton	165.2	-1286.7	1291.4	169.8	-1267.1	1267.1	167.2			167.2		
TK 023 - L. Naphtha	ton	139.2	-244.9	245.6	139.9			139.9			139.9		
TK 002 · Unleaded	ton	1343.9		93.3	1437.2			1437.2			1437.2		
TK 004 - Unleaded	ton	791.2		28.1	819.3			819.3			819.3		
TK 005 - Unleaded	ton	2000.8		265.6	2266.4			2266.4	-4872.4	4120.2	1462.6		
TK 006 - Unleaded	ton	1585.5		96.6	1682.1			1682.1			1682.1		
TK 011 - Unlead. Plus	ton	678.9	-1503.9	1489.7	664.7			664.7			664.7		
Weight total	ton	20500.0	-1643.6		18856.3	18.7		18872.5	-3323.6		15497.4	1417.1	
•													٢
Add Dy	uplicate	1)elete	Egport		Import	1		<u>P</u> review	<u>E</u> xit		Apply	1
							_						-

Figure 20 - Multi Period Production Balance example

• *Solution Analysis Reports*: analysis of the marginal values contained in the solution aimed to highlight the constraints limiting the results, blending components shadow values and the blending options that have been excluded by the model resulting unprofitable (Figure 21).

Uneconomical Options in period 11 I INTERMEDIATE - KIND MN Intermediate HN Intermediate HN Intermediate HN Intermediate UN Intermediate DH Intermediate LN I							
INTERMEDIATE - FR INTERMEDIATE - KIND INTERMEDIATE - KIND INTERMEDIATE Intermediate Intermediate HN Intermediate Intermediate HN Intermediate Intermediate INTERMEDIATE Intermediate Intermediate INTERMEDIATE Intermediate Intermediate DH Intermediate Intermediate INTERMEDIATE Intermediate Intermediate DH Intermediate Intermediate Intermediate Intermediate Intermediate HN Intermediate Intermediate Intermediate Intermediate Intermediate <t< td=""><td>]</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>]						
− KIND − KIND − Intermediate Intermediate HN Intermediate MN Intermediate MN Intermediate LN Intermediate DH Intermediate IN Intermediate IN Intermediate	FROM		PENALTY				
 Intermediate Inte			€/ton				
HN Intermediate HN Intermediate HN Intermediate HN Intermediate DH Intermediate LN Intermediate HT Intermediate LN Intermediate DH Intermediate HT Intermediate	M.Naphtha	L. Naphtha	1659.03				
HN Intermediate MN Intermediate HN Intermediate DH Intermediate Intermediate HI Intermediate HI Intermediate DH Intermediate DH Intermediate LN Intermediate HI Intermediate	M.Naphtha	Unleaded	429.69				
MN Intermediate HN Intermediate LN Intermediate DH Intermediate Intermediate Intermediate RI Intermediate DH Intermediate Intermediate Intermediate DH Intermediate Intermediate Intermediate LN Intermediate Intermediate Intermediate	H.Naphtha	Unlead. Plus	350.86				
HN Intermediate In	M.Naphtha	Unlead. Plus	336.99				
LN Intermediate IIntermediate IIIntermediate IIIINtermediate IIINtermediate IIINtermediate IIINtermediate IIINtermediate IIINtermediate IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	H.Naphtha	Unleaded	312.03				
DH Intermediate In	L.Naphtha	Unleaded	237.82				
BH Intermediate Intermediate DH Intermediate DH Intermediate DH Intermediate Interm	DIH Btm	Unlead. Plus	220.39				
RI Intermediate LN Intermediate → DH Intermediate → LN Intermediate → Intermediate Intermediate → LN Intermediate → HN Intermediate → HN Intermediate → Intermediate Intermediate → HN Intermediate → Intermediate Intermediate → Intermediate Intermediate → Intermediate Intermediate → Intermediate Intermediate → DH Intermediate → Intermediate Intermediate → Intermediate Intermediate	DIH Btm	Unleaded	188.92				
LN Intermediate IIs Intermediate Intermediat	R98+iC5	Unleaded	187.34				
DH Intermediate In	L.Naphtha	Unlead. Plus	177.64				
DH Intermediate	DIH Btm	H. Naphtha	149.08				
LN Intermediate	DIH Btm	H. Naphtha	130.72				
LN Intermediate Is Intermediate III III III III III III III III IIII III IIII	L.Naphtha	Unleaded	95.91				
HN Intermediate Is Intermediate	L.Naphtha	Unleaded	95.45				
HN Intermediate IIs Intermediate Intermediat	L.Naphtha	Unleaded	95.29				
HN Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Is Intermediate	H.Naphtha	H. Naphtha	18.01				
- HN Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate IIS Intermediate Intermedi	H.Naphtha	Unleaded	17.20				
RI Intermediate In	H.Naphtha	Unleaded	17.08				
RI Intermediate In	H.Naphtha	Unleaded	16.71				
RI Intermediate Intermediate Intermediate DH Intermediate Intermediate Intermediate Intermediate Intermediate	B98+iC5	Unleaded	9.28				
Intermediate I IS Intermediate I DH Intermediate I Intermediate I Intermediate I	B98+iC5	Unleaded	915				
IS Intermediate I DH Intermediate I Intermediate I Intermediate I	B98+iC5	Unleaded	8.79				
DH Intermediate I Intermediate I Intermediate I Intermediate I	Isom	L Naphtha	7.85				
DH Intermediate I Intermediate I	DIH Btm	Unleaded	0.98				
- BII Intermediate	DIH Btm	Unleaded	0.30				
- BU	Butane	Unleaded	0.05				
Intermediate	Butane	Unleaded	0.03				
Internediate I	Datano	Torricadoa	0.01				
Add Duplicate	Delete	Export	Import	Preview	.	Exit	Annlu

Figure 21 - Wasteful Options Report Example

• *Products Reports*: Available only on single period base, these reports details the suggested blending recipe (Figure 22) and the calculated quality (Figure 23) for each product produced in the period.

Qualities in period '1'	I. Plus Compositio	on in period '1'							
- INTERMEDIATE CO	VALUE	- TK 011 - Un	ead. Plus						
FROM CRUDES & PL4	€/ton	ton	€/ton						
Initial Stock		678,9							
Butane	484,71	49,7							
DIH Btm	354,25								
H.Naphtha	219,36								
MTBE	554,76	282,6							
Isom	227,21	33,4							
L.Naphtha	219,35								
R98+iC5	510,22	1123,9							
M.Naphtha	234,23								
Total		2168,6							
	-	1	_	1	1		1	-	
A <u>d</u> d Dy	uplicate	Dejete	Egport	Įmp	port	<u>P</u> review		<u>E</u> xit	Apply

Figure 22 - Finished Product Composition

🔒 TK 011 - H1 Unlead	l. Plus							<u>_ ×</u>
Qualities in period '1'	Compositio	on in period '1'						
- PRODUCTS		– Un	ead. Plus					
	TANK	= 011	<u> </u>	- 011	i .			
SPECIFICATIONS	UNIT	DELTA QUALITY		€×DQ	i .			
Density	kg/dm3	0,0100	0,7520		1			
Sulphur	ppm	10	31		i .			
Aromatics	%∨	1,00	36,74		1			
Benzene	%∨	0,0	0,7		i .			
Motor Octane	_	1,0	89,3		i .			
Research Octane	_	1,0	98,2	27,81	1			
Reid Vapour Pressure	bar	0,010	0,658		i .			
Rec.@70°C	%∨	1,0	44,8		1			
Rec.@100°C	%∨	1,0	61,0		i .			
Rec.@150°C	%∨	1,0	83,5		i .			
Rec.@180°C	%∨	1,0	96,5		1			
Vapour Lock Index	_	100	947		j .			
			-		1			
A <u>d</u> d Dj	uplicate	Dejete	Export		Import	Preview	<u>E</u> xit	Apply

Figure 23 - Finished Product Quality

IMPACT OF ALTERNATIVE MARKET SCENARIOS

To demonstrate how the Market Scenario affects Model results, the price scenario reported in (Table 5) has been changed increasing the differential between Unleaded 95 RON and Unleaded Plus 98 RON of 20 C/m^3 , while all the other constraints have been left unchanged.

Intermediate components quantities are fixed (assuming a *Plant Driven Approach*), thus we intend to analyse how the change of price differential affects the optimal management of blending components.

Product formulation resulting from the two cases is reported in Table 6: while the production of Light and Heavy Naphtha, and the total production of Gasoline remain

unchanged, the percentile production of Unleaded PLUS 98 over Gasoline is almost doubled (from 8 to 16 %) and the average formulation of both products changes.

CASE A - LOW DIFFERENTIAL												
INTER	MEDIATES (t	on)	FINISHED PRODUCTS (ton)									
	INIT.STOCK	FIN.STOCK	INPUTS	H. NAPHTHA	L. NAPHTHA	UNLEADED	UNLEADED					
						95	PLUS 98					
PRODUCT TANK BOTTOM			7208.5	669.1	139.2	5721.4	678.9					
BU (Butane)			327.7	0		321.1	6.6					
DH (DIH Btm)	399.5		519.7	392.3		127.3						
HN (H.Naphtha)	2116.3	740.5	1843.5	1843.5		0						
MT (MTBE)	951.9		951.9	0		771.9	180					
IS (Isom)	2491	2259.8	2070.5	0		2020.7	49.8					
LN (L.Naphtha)	1522.8		2272.5	0	2272.5	0						
RI (R98+iC5)	3527.5	1780.7	6861.9	0		6469.3	392.5					
MN (M.Naphtha)	2250.6		3079.2	2885.6	193.6	0						
TOTAL				5790.5	2605.3	15431.7	1307.8					
BLENDED IN PERIOD				5121.4	2466.1	9710.3	628.9					

CASE B - HIGH DIFFERENTIAL												
INTER	MEDIATES (t	on)	FINISHED PRODUCTS (ton)									
	INIT.STOCK	FIN.STOCK	INPUTS	H. NAPHTHA	L. NAPHTHA	UNLEADED 95	UNLEADED PLUS 98					
PRODUCT TANK BOTTOM			7208.5	669.1	139.2	5721.4	678.9					
BU (Butane)			288.2	0		226.5	61.7					
DH (DIH Btm)	399.5		519.7	392.3		127.4						
HN (H.Naphtha)	2116.3	740.5	1843.5	1843.5		0						
MT (MTBE)	951.9		1084.4	0		710.8	373.5					
IS (Isom)	2491	2609.6	1720.7	0		1698.4	22.4					
LN (L.Naphtha)	1522.8		2272.5	0	2272.5	0						
RI (R98+iC5)	3527.5	1780.7	6861.9	0		5283.1	1578.8					
MN (M.Naphtha)	2250.6		3079.2	2885.6	193.6	0						
TOTAL				5790.5	2605.3	13767.6	2715.3					
BLENDED IN PERIOD				5121.4	2466.1	8046.2	2036.4					

Table 6 - Impact of Price differential on Model Result

CONCLUSIONS

OTTMIX is an LP/MIP driven application dedicated to the optimisation of Batch Blending Operation on a Multi Periodic Base; a Model aimed to support the definition of the weekly schedule of Gasoline Blending Operation has been presented.

The application disposes of an intuitive interface oriented to the mentality of the Blending Operator, and can be easily managed even without a specific Mathematical Background.

Expected advantages are:

- progressive reduction of quality give away,
- reduction of laboratory tests needed to monitor batch quality,
- better management of intermediate components (eventually preserved for future productions),
- improvement of high value products yields from the same quantities of intermediate products,
- reduced investment cost against other well established technologies aimed to obtain similar results.